
Department of Electrical and Computer Engineering 1

Neural Network Image Detection for 
SmartSSD Platform

Jackson Hafele, William Zogg
CPR E 563 Final Report Spring 2023



Department of Electrical and Computer Engineering 2

Motivation

● Image detection is a notoriously high-BW ML 

application. [1]

● Computational Storage Devices (CSD) bring ML 

acceleration closer to the necessary storage. [2]

● Smart SSD can be an all-in-one solution 

combining:

○ Large, fast flash storage to store an entire 

neural network.

○ Close, customizable FPGA acceleration to 

utilize high BW.

[3]



Department of Electrical and Computer Engineering 3

Background - Neural Network Application

● Image classification using the 

TinyImageNet dataset

● Utilizes 12 layer neural network to 

classify an image into 1 of 200 classes

● Each layer is computationally heavy.

● Thousands of data values loaded for 

every single inference

[7]

[8]



Department of Electrical and Computer Engineering 4

Background - Convolution Process

● Evaluate strength of a filter to 

identify features in images

● Higher number -> Higher 

presence of filter

● Data Used:

○ Input Data (3D array)

○ Filter Data (4D array)

○ Output Data (3D array)
[9]



Department of Electrical and Computer Engineering 5

Background - SmartSSD

● 3.84 TB NAND Flash Samsung SSD [4]

○ NVMe Connection

● AMD Kintex Ultrascale+ FPGA

○ Utilize Vitis to synthesize C

○ Reconfigurable

● PCIe Switch between SSD, FPGA, and 

Host CPU 

SmartSSD Architecture [5]



Department of Electrical and Computer Engineering 8

Related Works - NeSSA

● Data movement can take as much as 80% of total time for warehouse-scale 

operations

● Proposes near-storage acceleration model involving SmartSSD to reduce data 

movement

● Select subsets of large datasets to train while maintaining accuracy

○ Uses multiple datasets to train model (includeTinyImageNet)

● Analyzes accuracy of NeSSA training and time to train 

○ Compares multiple subset sizes with other training models [6]



Department of Electrical and Computer Engineering 9

Related Works - NeSSA

Percent of time Training Neural Netw orks Vs. Data 

Movement Latency for Machine Learning Models[6]

● Authors compare time 

spent on computation and 

data movement for multiple 

models

● Demonstrates importance 

of improving Data 

Movement latency for 

future works



Department of Electrical and Computer Engineering 10

Solution Approach

1. Run Neural Network application on Host Machine

a. Utilize existing CPRE487/587X library, gain baseline results

2. Convolution Kernel Synthesis

a. Refactor Convolution Layer to individual function

b. Synthesize Kernel in Vitis

3. Run Neural Network application on SmartSSD application

a. Compile with Vitis

b. Peer to Peer communication between SSD and FPGA

4. Optimize Kernel design and memory transactions to reduce latency



Department of Electrical and Computer Engineering 11

Host Process

Host Code Steps

1. Read Convolution inputs from SSD to Host

2. Compute Floating Point operations on Host 

CPU

3. Write resulting convolution output from 

Host to SSD

Datapath Control

Step 3Step 1

Step 2



Department of Electrical and Computer Engineering 12

SmartSSD Process

Host Code Steps

1. Initialize Kernel and SmartSSD

2. Write convolution inputs from Host to SSD in fixed 

blocks

3. Read input arguments from SSD to FPGA

4. Activate Kernel

5. Write output from FPGA to SSD

6. Read value from SSD to Host to Verify

Step 1
Step 2

Step 6

Step 3

Step 3 Step 3

Step 5

Step 5Step 5

Step 4

Step 4

Datapath Control



Department of Electrical and Computer Engineering 13

Neural Network with Host

● Run baseline code on SmartSSD device WITHOUT FPGA

● Majority of time spent on data movement

○ Reading takes majority of time: 0.459 seconds

○ Writing data has minimal overhead: 0.002 seconds

● Computing FP operations takes 0.195 seconds

● A single inference for a low-res test image takes 0.672 

seconds

● How can we reduce data movement with SmartSSD? 



Department of Electrical and Computer Engineering 14

Convolution Kernel

● Created separate class for Layer 2 Convolution

○ Enabled changes to Layer 2 while keeping rest of code same

○ Convolve operation moved to independent function

○ Called within the 3 level nested for loop

● Created function for single point convolution

○ Flattened 3D and 4D arrays into 1D arrays for synthesis and interfacing

○ 800 loop iterations to operate in kernel per call



Department of Electrical and Computer Engineering 15

Convolution Kernel

Layer 2 Convolution Function



Department of Electrical and Computer Engineering 16

Convolution Kernel

Single Point Convolution Function, Target Kernel



Department of Electrical and Computer Engineering 17

SmartSSD Application

● Created Host code for Peer to Peer memory 

transactions between Host/SSD and SSD/FPGA

● Synthesized Kernel code to run on SmartSSD FPGA

● Verified expected kernel output of convolution point

● Collected timing metrics with chrono C++ library

○ Inconsistent results for individual 

read/compute/write operations SmartSSD Architecture [5]



Department of Electrical and Computer Engineering 18

SmartSSD Optimization

● Problem

○ Latency of FPGA kernel extremely slow

○ Memory transactions limited by 512 Byte minimum read/write size

○ Read/Write transactions not utilizing high bandwidth

● Solution

○ Reduce amount of empty data read/write due to minimum block size to 

increase data bandwidth

○ Reduce Kernel latency by adding parallelization of single point

○ Compute multiple points in 1 kernel call to increase data bandwidth

■ Less read/write transaction overhead from host



Department of Electrical and Computer Engineering 19

SmartSSD Optimization

● Kernel Improvements

○ Old Kernel: 9107 cycles for 1 point

○ Final Kernel: 708,747 cycles for 1024 points, average 692 cycles for 1 point

■ Computes 1024 points per kernel call, loop unrolling with stride 32

■ Average 0.865 cycles per loop iteration with parallelization

● Read Improvements

○ Old Host: Reads 4096 Values per point, Only 1602 Used

○ Final Host: Reads 1600 Values per point, Fully utilized

● Write Improvements

○ Old Host: Writes 1024 Values per point, only 1 Used

○ Final Host: Writes 1 value per point, Fully utilized



Department of Electrical and Computer Engineering 20

Results

● Full Layer Baseline CPU: 0.662 seconds

● Original SmartSSD: 32.246 seconds

● 48x SPEED DOWN

● Large improvement when running 

multiple convolution operations in one 

kernel

● Majority of time spent reading data 

from SSD and computing kernel



Department of Electrical and Computer Engineering 21

Results

● Full Layer Baseline CPU: 0.662 seconds

● 1024 Points per Kernel: 0.4778 seconds

● 1.38x SPEED UP

● More points per call -> 

○ less latency overhead from kernel 

call control

○ Higher data bandwidth in read 

transactions



Department of Electrical and Computer Engineering 22

Results

● Speedup normalized to Baseline CPU

● Data read from SSD: 1.74X SPEED UP

● Kernel computations still slightly 

slower than baseline, room for 

improvement with Vitis HLS

● Data writes slower, due to low 

bandwidth transaction of 1 block 

writeback per 1024 points



Department of Electrical and Computer Engineering 23

Results

● Baseline CPU: 70.50% moving data

● 1024 Point: 53.82% moving data

● As data bandwidth increases per N 

point operations, % data movement 

decreases

● Final design also has lower data 

movement latency

● Leaves more room for improvement 

in optimizing kernel or write 

transactions



Department of Electrical and Computer Engineering 24

Analysis

● Application specific designs will take tailoring to achieve 

performance benefits, as seen with original FPGA design

● SmartSSD can provide speedup in terms of overall execution 

time while lowering the gap between data movement and 

computation time

● Designs benefit from high bandwidth applications and 

parallelization of FPGA design



Department of Electrical and Computer Engineering 25

Future Work

● Potential improvement for computation 

time of floating point operations in FPGA 

kernel

○ More parallelization, compute 1024 

points faster

● Could speed up writeback by increasing 

write bandwidth larger than 1 4KB block

○ Store full layer of points then write 

back with one write transaction



Department of Electrical and Computer Engineering 26

References

[1] J. Do, V. C. Ferreira, H. Bobarshad, M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, D. Souza, B. F. Goldstein, L. Santiago, M. S. Kim, P. M. V. Lima, F. M. G. França, and V. 

Alves, “Cost-effective, energy-efficient, and scalable storage computing for large-scale ai applications,” ACM Trans. Storage, vol. 16, oct 2020.

[2] D. Fakhry, M. Abdelsalam, M. W. El-Kharashi, and M. Safar, “A review on computational storage devices and near memory computing for high performance 

applications,” Memories - Materials, Devices, Circuits and Systems, vol. 4, p. 100051, 2023.

[3] https://miro.medium.com/max/700/1*oB3S5yHHhvougJkPXuc8og.gif

[4] https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html

[5] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao and Y. S. Ki, "SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD," in IEEE Computer 

Architecture Letters, vol. 19, no. 2, pp. 110-113, 1 July-Dec. 2020, doi: 10.1109/LCA.2020.3009347. keywords: {Field programmable gate arrays;Bandwidth;Random 

access memory;IP networks;Pipelines;Data analysis;Throughput;SmartSSD;data analytics;spark;parquet;SSD}

[6] Neha Prakriya, Yu Yang, Baharan Mirzasoleiman, Cho-Jui Hsieh, and Jason Cong. 2023. NeSSA: Near-Storage Data Selection for Accelerated Machine Learning 

Training. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage '23). Association for Computing Machinery, New York, 

NY, USA, 8–15. https://doi.org/10.1145/3599691.3603404

[7] https://miro.medium.com/v2/resize:fit:1200/1*QnKckNSZilG3HxytJZUoAw.png

[8] https://assets-global.website-files.com/5d7b77b063a9066d83e1209c/627d1225cb1b3d197840427a_60f040a887535b932a3b2b6e_cnn-hero%2520(1).png

[9] https://assets-global.website-files.com/614c82ed388d53640613982e/646371e3bdc5ca90dee5331b_convolutional-neural-network%20(1).webp

https://miro.medium.com/max/700/1*oB3S5yHHhvougJkPXuc8og.gif
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://doi.org/10.1145/3599691.3603404
https://miro.medium.com/v2/resize:fit:1200/1*QnKckNSZilG3HxytJZUoAw.png


Department of Electrical and Computer Engineering 27

Questions



Department of Electrical and Computer Engineering 28

Supplemental



Department of Electrical and Computer Engineering 29

Supplemental



Department of Electrical and Computer Engineering 30

Supplemental



Department of Electrical and Computer Engineering 31

Supplemental



Department of Electrical and Computer Engineering 32

Supplemental



Department of Electrical and Computer Engineering 33

Supplemental

Final Kernel Latency Delays

Original Kernel Latency Delays



Department of Electrical and Computer Engineering 34

Supplemental

Final Kernel Utilization



Department of Electrical and Computer Engineering 35

Supplemental

Final Kernel Code



Department of Electrical and Computer Engineering 36

Supplemental

Write to SSD From Host

Read from SSD to Host



Department of Electrical and Computer Engineering 37

Supplemental

1. Read from SSD to FPGA

4. Write to SSD from FPGA

2. Set Input Arguments for Kernel to buffer pointers 3. Call FPGA Kernel


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

