Neural Network Image Detection for SmartSSD Platform

Jackson Hafele, William Zogg CPR E 563 Final Report Spring 2023

Motivation

- Image detection is a notoriously high-BW ML application. [1]
- Computational Storage Devices (CSD) bring ML acceleration closer to the necessary storage. [2]
- Smart SSD can be an all-in-one solution combining:
 - Large, fast flash storage to store an entire neural network.
 - Close, customizable FPGA acceleration to utilize high BW.

Background - Neural Network Application

- Image classification using the TinyImageNet dataset
- Utilizes 12 layer neural network to classify an image into 1 of 200 classes
- Each layer is computationally heavy.
- Thousands of data values loaded for every single inference

IOWA STATE UNIVERSITY

Background - Convolution Process

- Evaluate strength of a filter to identify features in images
- Higher number -> Higher presence of filter
- Data Used:
 - Input Data (3D array)
 - Filter Data (4D array)
 - Output Data (3D array)

IOWA STATE UNIVERSITY

Background - SmartSSD

- 3.84 TB NAND Flash Samsung SSD [4]
 - \circ NVMe Connection
- AMD Kintex Ultrascale+ FPGA
 - Utilize Vitis to synthesize C
 - Reconfigurable
- PCIe Switch between SSD, FPGA, and Host CPU

SmartSSD Architecture [5]

IOWA STATE UNIVERSITY

Related Works - NeSSA

- Data movement can take as much as 80% of total time for warehouse-scale operations
- Proposes near-storage acceleration model involving SmartSSD to reduce data movement
- Select subsets of large datasets to train while maintaining accuracy
 - Uses multiple datasets to train model (includeTinyImageNet)
- Analyzes accuracy of NeSSA training and time to train
 - Compares multiple subset sizes with other training models [6]

Related Works - NeSSA

- Authors compare time spent on computation and data movement for multiple models
- Demonstrates importance of improving Data Movement latency for future works

Percent of time Training Neural Networks Vs. Data Movement Latency for Machine Learning Models[6]

IOWA STATE UNIVERSITY

Solution Approach

- 1. Run Neural Network application on Host Machine
 - a. Utilize existing CPRE487/587X library, gain baseline results
- 2. Convolution Kernel Synthesis
 - a. Refactor Convolution Layer to individual function
 - b. Synthesize Kernel in Vitis
- 3. Run Neural Network application on SmartSSD application
 - a. Compile with Vitis
 - b. Peer to Peer communication between SSD and FPGA
- 4. Optimize Kernel design and memory transactions to reduce latency

Host Process

Host Code Steps

- 1. Read Convolution inputs from SSD to Host
- 2. Compute Floating Point operations on Host CPU

Datapath

Control

3. Write resulting convolution output from Host to SSD

IOWA STATE UNIVERSITY

SmartSSD Process

Host Code Steps

- 1. Initialize Kernel and SmartSSD
- 2. Write convolution inputs from Host to SSD in fixed blocks

Datapath

Control

- 3. Read input arguments from SSD to FPGA
- 4. Activate Kernel
- 5. Write output from FPGA to SSD
- 6. Read value from SSD to Host to Verify

IOWA STATE UNIVERSITY

Neural Network with Host

- Run baseline code on SmartSSD device WITHOUT FPGA
- Majority of time spent on data movement
 - Reading takes majority of time: 0.459 seconds
 - Writing data has minimal overhead: 0.002 seconds
- Computing FP operations takes 0.195 seconds
- A single inference for a low-res test image takes 0.672 seconds
- How can we reduce data movement with SmartSSD?

Running inference on layer 0 TIME: convolution layer took 0.0636671 second Running inference on layer 1 TIME: convolution layer read took 0.459795 seconds TIME: convolution layer operation took 0.195236 seconds TIME: convolution layer write took 0.00251626 seconds TIME: convolution layer took 0.672581 seconds Running inference on layer 2 TIME: maxpooling layer took 0.000598622 seconds Running inference on layer 3 TIME: convolution layer took 0.0779198 seconds Running inference on layer 4 TIME: convolution layer took 0.136815 seconds Running inference on layer 5 TIME: maxpooling layer took 0.000237458 seconds Running inference on layer 6 TIME: convolution layer took 0.0248409 seconds Running inference on layer 7 TIME: convolution layer took 0.0348511 seconds Running inference on layer 8 TIME: maxpooling layer took 5.2217e-05 seconds Running inference on layer 9 TIME: flatten layer took 1.0095e-05 seconds Running inference on layer 10 TIME: dense layer took 0.00156071 seconds Running inference on layer 11 TIME: dense layer took 0.000174442 seconds Running inference on layer 12 TIME: softmax layer took 1.8034e-05 seconds TIME: Model inference time 1.01346 seconds

IOWA STATE UNIVERSITY

Convolution Kernel

- Created separate class for Layer 2 Convolution
 - Enabled changes to Layer 2 while keeping rest of code same
 - Convolve operation moved to independent function
 - Called within the 3 level nested for loop
- Created function for single point convolution
 - Flattened 3D and 4D arrays into 1D arrays for synthesis and interfacing
 - 800 loop iterations to operate in kernel per call

Convolution Kernel

Layer 2 Convolution Function

IOWA STATE UNIVERSITY

Convolution Kernel

```
void computePointHLS(float dataIn data[800], float* dataOut data, float layerWeight data[800], float* layerBias data) {
#pragma HLS interface mode=m axi port=dataIn data
#pragma HLS interface mode=s axilite port=dataOut data
#pragma HLS interface mode=m axi port=layerWeight data
#pragma HLS interface mode=s axilite port=layerBias data
    float dataOut Internal;
    for (int i = 0; i < 32*5*5; i++) { //dataInDepth = 32
       dataOut Internal += dataIn data[i] * layerWeight data[i];
    dataOut Internal += *layerBias data;
   //Store dataOut data
    *dataOut data = dataOut Internal;
```

Single Point Convolution Function, Target Kernel

IOWA STATE UNIVERSITY

SmartSSD Application

- Created Host code for Peer to Peer memory transactions between Host/SSD and SSD/FPGA
- Synthesized Kernel code to run on SmartSSD FPGA
- Verified expected kernel output of convolution point
- Collected timing metrics with **chrono** C++ library
 - Inconsistent results for individual read/compute/write operations

SmartSSD Architecture [5]

IOWA STATE UNIVERSITY

SmartSSD Optimization

- Problem
 - Latency of FPGA kernel extremely slow
 - Memory transactions limited by 512 Byte minimum read/write size
 - Read/Write transactions not utilizing high bandwidth
- Solution
 - Reduce amount of empty data read/write due to minimum block size to increase data bandwidth
 - Reduce Kernel latency by adding parallelization of single point
 - Compute multiple points in 1 kernel call to increase data bandwidth
 - Less read/write transaction overhead from host

SmartSSD Optimization

- Kernel Improvements
 - Old Kernel: 9107 cycles for 1 point
 - Final Kernel: 708,747 cycles for 1024 points, average 692 cycles for 1 point
 - Computes 1024 points per kernel call, loop unrolling with stride 32
 - Average 0.865 cycles per loop iteration with parallelization
- Read Improvements
 - Old Host: Reads 4096 Values per point, Only 1602 Used
 - Final Host: Reads 1600 Values per point, Fully utilized
- Write Improvements
 - Old Host: Writes 1024 Values per point, only 1 Used
 - Final Host: Writes 1 value per point, Fully utilized

IOWA STATE UNIVERSITY

- Full Layer Baseline CPU: 0.662 seconds
- Original SmartSSD: 32.246 seconds
- 48x SPEED DOWN
- Large improvement when running multiple convolution operations in one kernel
- Majority of time spent reading data from SSD and computing kernel

IOWA STATE UNIVERSITY

- Full Layer Baseline CPU: 0.662 seconds
- 1024 Points per Kernel: 0.4778 seconds •
- 1.38x SPEED UP
- More points per call ->
 - less latency overhead from kernel Ο call control
 - Higher data bandwidth in read Ο transactions

IOWA STATE UNIVERSITY

- Speedup normalized to Baseline CPU
- Data read from SSD: 1.74X SPEED UP
- Kernel computations still slightly slower than baseline, room for improvement with Vitis HLS
- Data writes slower, due to low bandwidth transaction of 1 block writeback per 1024 points

	Baseline	40 Points Per Call	90 Points Per Call	1024 Points Per Call
Read Data Compute Write Data	100.00% 100.00% 100.00%	39.98% 28.67% 1.90%	64.83% 43.19% 7.47%	174.87% 77.91% 84.40%
Full Operation	100.00%	44.85%	69.17%	138.61%

Speedup of Baseline and N Points Per Call for Individual and Total Steps

IOWA STATE UNIVERSITY

- Baseline CPU: 70.50% moving data
- 1024 Point: 53.82% moving data
- As data bandwidth increases per N point operations, % data movement decreases
- Final design also has lower data movement latency
- Leaves more room for improvement in optimizing kernel or write transactions

	Baseline	40 Points	90 Points	1024 Points
Data Movement %	70.50%	65.23%	63.54%	53.82%
Computation %	29.50%	34.77%	36.46%	46.18%

Relative Execution Time of Computation Vs. Data Movement

IOWA STATE UNIVERSITY

Analysis

- Application specific designs will take tailoring to achieve performance benefits, as seen with original FPGA design
- SmartSSD can provide speedup in terms of overall execution time while lowering the gap between data movement and computation time
- Designs benefit from high bandwidth applications and parallelization of FPGA design

Future Work

- Potential improvement for computation time of floating point operations in FPGA kernel
 - More parallelization, compute 1024 points faster
- Could speed up writeback by increasing write bandwidth larger than 1 4KB block
 - Store full layer of points then write back with one write transaction

References

- [1] J. Do, V. C. Ferreira, H. Bobarshad, M. Torabzadehkashi, S. Rezaei, A. Heydarigorji, D. Souza, B. F. Goldstein, L. Santiago, M. S. Kim, P. M. V. Lima, F. M. G. França, and V. Alves, "Cost-effective, energy-efficient, and scalable storage computing for large-scale ai applications," ACM Trans. Storage, vol. 16, oct 2020.
- [2] D. Fakhry, M. Abdelsalam, M. W. El-Kharashi, and M. Safar, "A review on computational storage devices and near memory computing for high performance applications," Memories Materials, Devices, Circuits and Systems, vol. 4, p. 100051, 2023.
- [3] https://miro.medium.com/max/700/1*oB3S5yHHhvougIkPXuc8og.gif
- [4] https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
- [5] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao and Y. S. Ki, "SmartSSD: FPGA Accelerated Near Storage Data Analytics on SSD," in *IEEE Computer Architecture Letters*, vol. 19, no. 2, pp. 110–113, 1 July-Dec. 2020, doi: 10.1109/LCA.2020.3009347. keywords: {Field programmable gate arrays;Bandwidth;Random access memory;IP networks;Pipelines;Data analysis;Throughput;SmartSSD;data analytics;spark;parquet;SSD}
- [6] Neha Prakriya, Yu Yang, Baharan Mirzasoleiman, Cho-Jui Hsieh, and Jason Cong. 2023. NeSSA: Near-Storage Data Selection for Accelerated Machine Learning Training. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage '23). Association for Computing Machinery, New York, NY, USA, 8–15. <u>https://doi.org/10.1145/35996913603404</u>
- [7] https://miro.medium.com/v2/resize:fit:1200/1*QnKckNSZilG3HxytJZUoAw.png
- [8] https://assets-global.website-files.com/5d7b77b063a9066d83e1209c/627d1225cb1b3d197840427a_60f040a887535b932a3b2b6e_cnn-hero%2520(1).png
- $[9] https://assets-global.website-files.com/614c82ed 388d 53640 61398 2e/646371e 3bdc5ca90dee 5331b_convolutional-neural-network\%20(1). webparticle and the state of the sta$

IOWA STATE UNIVERSITY

Questions

IOWA STATE UNIVERSITY

SSD Read Layer Execution Time (seconds)

SSD Read Layer Execution Time (seconds)

IOWA STATE UNIVERSITY

Kernel Execution Time (seconds)

: Kernel Execution Time (seconds)

IOWA STATE UNIVERSITY

SSD Write Layer Execution Time (seconds)

IOWA STATE UNIVERSITY

	Baseline	Original FPGA	Reduced Write	Stride 4	Reduced Read	2 m_axi busses	40 Points	90 Points	1024 Points
Point Time (us)	35.3864	173.0000	169.4000	159.4000	92.6000	91.0000	11.5750	7.1378	2.6463
Layer Time (s)	0.4644	17.3609	16.9996	15.9961	9.2926	9.1320	1.1616	0.7163	0.2656
Layer Difference (s)	0.0000	-16.8965	-16.5352	-15.5317	-8.8282	-8.6676	-0.6972	-0.2519	0.1988
Speedup	1.0000	0.0267	0.0273	0.0290	0.0500	0.0509	0.3998	0.6483	1.7487

Table II: SSD Read Latency

	Baseline	Original FPGA	Reduced Write	Stride 4	Reduced Read	2 m_axi busses	40 Points	90 Points	1024 Points
Point Time (us)	2.5044	263.6000	295.4000	248.2000	246.8000	211.8000	6.7900	4.5067	2.4986
Layer Time (s)	0.1953	26.4528	29.6440	24.9074	24.7669	21.2546	0.6814	0.4523	0.2507
Layer Difference (s)	0.0000	-26.2574	-29.4486	-24.7120	-24.5715	-21.0592	-0.4860	-0.2569	-0.0554
Speedup	1.0000	0.0074	0.0066	0.0078	0.0079	0.0092	0.2867	0.4319	0.7791

Table III: Single Point Kernel Computation Latency

IOWA STATE UNIVERSITY

	Baseline	Original FPGA	Reduced Write	Stride 4	Reduced Read	2 m_axi busses	40 Points	90 Points	1024 Points
Point Time (us)	0.0590	82.8000	35.2000	38.6000	49.8000	59.2000	1.3300	0.3378	0.0299
Layer Time (s)	0.0025	8.3091	3.5324	3.8736	4.9975	5.9408	0.1335	0.0339	0.0030
Layer Difference (s)	0.0000	-8.3066	-3.5299	-3.8711	-4.9950	-5.9383	-0.1309	-0.0314	-0.0005
Speedup	1.0000	0.0003	0.0007	0.0007	0.0005	0.0004	0.0190	0.0747	0.8440

Table IV: SSD Write Latency

	Baseline	Original FPGA	Reduced Write	Stride 4	Reduced Read	2 m_axi busses	40 Points	90 Points	1024 Points
Point Time (us)	6.5994	321.3449	277.1923	240.3659	174.4021	179.0099	14.7142	9.5404	4.7612
Layer Time (s)	0.6623	32.2476	27.8168	24.1212	17.5016	17.9640	1.4766	0.9574	0.4778
Layer Difference (s)	0.0000	-31.5853	-27.1545	-23.4589	-16.8393	-17.3017	-0.8143	-0.2951	0.1845
Layer Speedup %	1.0000	0.0205	0.0238	0.0275	0.0378	0.0369	0.4485	0.6917	1.3861

Table V: Total Single Point Latency

IOWA STATE UNIVERSITY

Latency Information Compute Unit Kernel Name Module Name Start Interval Best (cycles) Avg (cycles) Worst (cycles) Best (absolute) Avg (absolute) Worst (absolute) computePointHLS_1 computePointHLS computePointHLS_Pipeline_VITIS_LOOP_17_1 29.607 us 29.607 us 29.607 us 8883 8883 8883 8883 computePointHLS_1 computePointHLS computePointHLS 9108 9107 9107 9107 30.354 us 30.354 us 30.354 us

Original Kernel Latency Delays

1	Latency Information	n								
ł	Compute Unit	Kernel Name	Module Name	Start Interval	Best (cycles)	Avg (cycles)	Worst (cycles)	Best (absolute)	Avg (absolute)	Worst (absolute)
î										
ì	computePointHLS_1	computePointHLS	computePointHLS_Pipeline_VITIS_LOOP_104_2	34	34	34	34	0.113 us	0.113 us	0.113 us
i	computePointHLS_1	computePointHLS	computePointHLS_Pipeline_VITIS_LOOP_109_3	296	296	296	296	0.987 us	0.987 us	0.987 us
i	computePointHLS_1	computePointHLS	computePointHLS	708748	708747	708747	708747	2.362 ms	2.362 ms	2.362 ms

Final Kernel Latency Delays

IOWA STATE UNIVERSITY

T Kernel Synthesis U	tilization					
≚ \$ %						
Name	LUT	LUTAsMem	REG	BRAM	URAM	DSP
Platform	147967	9990	205724	257	12	9
 User Budget 	374753	151290	839716	727	116	1959
Used Resources	9715	1199	13127	24	0	15
Unused Resources	365038	150091	826589	703	116	1944
 computePointHLS (1) 	9715	1199	13127	24	0	15
computePointHLS 1	9715	1199	13127	24	0	15

Final Kernel Utilization

IOWA STATE UNIVERSITY

```
void computePointHLS(float* dataIn, float* layerWeight, float* dataOut_final)
#pragma HLS interface mode-m axi
                                                           bundle-gnen8
#pragma HLS interface mode=#_axi
#pragma HLS interface mode=m_axi
float temp_add[STRIDE];
for(int point = 0; point < NUM_POINTS; point++){</pre>
    for(int i = 0; i < STRIDE; i++){ //Reset Temp Values</pre>
            temp_add[i] = 0;
    for (int i = 0; i < POINT_SIZE; i += STRIDE) { //Compute
        #pragma HLS pipeline
        for(int j=0; j<STRIDE; j++){ //Loop Unrolling
            temp_add[j] += dataIn[POINT_SIZE*point + i+j] * layerWeight[POINT_SIZE*point + i+j];
    for(int i=1; i<STRIDE; i++) //Sum temp values
    Mpragma HLS unroll
        temp_add[0] += temp_add[i];
   dataOut_final[point] = temp_add[0]; //Store dataOut_data
```

Final Kernel Code

IOWA STATE UNIVERSITY

if (pwrite(nvmeFd, static_cast<void*>(in_data.data()), vector_size_bytes_write, BLOCK_SIZE_BYTES * IN_OFFSET) < 0) { //Error if <<
 printf("WRITE FAIL! %s\n", strerror(errno));
 exit(EXIT_FAILURE);</pre>

Write to SSD From Host

If (pread(nvmeFd, static_cast<void*>(out_final.data()), vector_size_bytes_read, BLOCK_SIZE_BYTES * OUT_FINAL_OFFSET) < 0) { //Error if <0
 printf("READ FAIL! %s\n", strerror(errno));
 exit(EXIT_FAILURE);</pre>

Read from SSD to Host

IOWA STATE UNIVERSITY

1. Read from SSD to FPGA

// Set the Kernel Arguments	
<pre>OCL_CHECK(err, err = krnl_computePointHLS.setArg(0, buffer_input_p2p_read_in_data)); OCL_CHECK(err, err = krnl_computePointHLS.setArg(1, buffer_input_p2p_read_in_weight)); OCL_CHECK(err, err = krnl_computePointHLS_setArg(2, buffer_output_p2p_write_out_final));</pre>	<pre>OCL_CHECK(err, err = q.enqueueTask(krnl_computePointHLS)); OCL_CHECK(err, err = q.finish());</pre>
oct_theck(err, err = krni_computerointhes.setArg(2, ourrer_output_p2p_write_out_rinal));	

2. Set Input Arguments for Kernel to buffer pointers

3. Call FPGA Kernel

//Write the output from the FPGA to the SSD
if (pwrite(nvmeFd, (void*)p2pPtrWrite_out_data_final, vector_size_bytes_read, BLOCK_SIZE_BYTES * OUT_FINAL_OFFSET) < 0) { //Error if <0
 printf("WRITE FAIL! %s\n", strerror(errno));
 exit(EXIT_FAILURE);</pre>

4. Write to SSD from FPGA

IOWA STATE UNIVERSITY