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Motivation

e Imagedetectionisanotoriously high-BW ML

application. [1]
e Computational Storage Devices (CSD) bring ML
accelerationcloser to the necessary storage. [2]

e SmartSSD canbeanall-in-one solution

combining:

o Large, fastflash storage to store an entire 3]

neural network.
o Close, customizable FPGA acceleration to
utilize high BW.
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Background - Neural Network Application
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Background - Convolution Process

e Evaluatestrength of a filter to
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Background - SmartSSD

e 3.84TB NAND Flash Samsung SSD [4]

o NVMe Connection

e AMD Kintex Ultrascale+ FPGA
o Utilize Vitis to synthesize C
o Reconfigurable

e PCle Switch between SSD, FPGA, and

Host CPU
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Related Works - NeSSA

e Datamovement can takeas muchas 80% of total time for warehouse-scale
operations
e Proposes near-storageacceleration model involving SmartSSDto reduce data
movement
e Select subsets of large datasetsto train while maintaining accuracy
o Uses multiple datasetsto trainmodel (includeTinyImageNet)
e Analyzes accuracy of NeSSA trainingand time to train
o Comparesmultiple subset sizes with other training models [6]
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Related Works - NeSSA

[ ] AUthOI'S COmpare time B Training & Other Operations [l Data Movement
100%
spent on computationand :
data movement for multiple g ™
models 5 o
. g
e Demonstratesimportance :
: : :
of improving Data B
0%
MHIST CIFARID CIFAR-100 Enagaet-100
Movement latency for o
future works Percent of time Training Neural Netw orks Vs. Data

Movement Latency for Machine Learning Models[6]
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Solution Approach

1. Run Neural Network application on Host Machine
a. Utilize existing CPRE487/587X library, gain baseline results
2. Convolution Kernel Synthesis
a. Refactor Convolution Layer to individual function
b. Synthesize Kernel in Vitis
3. Run Neural Network application on SmartSSD application
a. Compile with Vitis
b. Peer to Peer communication between SSD and FPGA
4. Optimize Kernel design and memory transactions toreducelatency
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Host Process

Host Code Steps
1. Read Convolution inputs from SSD to Host
2. Compute Floating Point operations on Host
CPU
3. Writeresulting convolution output from
Host to SSD

Datapath Control
— —
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SmartSSD Process

Host Code Steps

1.
2.

o VoW

Step 1
Initialize Kernel and SmartSSD Step 2
Write convolution inputs from Host to SSD in fixed Host CPU
blocks T
Read input arguments from SSD to FPGA 4 4
. Step 3 W Step 3
Activate Kernel Step 4 Step 6
Write output from FPGA to SSD Step 5 Step 5
Read value from SSD to Host to Verify v \ 20 /
FPGA | Step 3 SSD
Datapath Control Step S >
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Neural Network with Host

Running inference on layer @

e Run baseline code on SmartSSD device WITHOUT FPGA

H'.IIII'ILI'Ig inference an 1.'1'5'1‘1 1
TIME: convolution layer read took @.459795 seconds
TIME: convolution layer eperation took ©.195236 seconds
TIME: convolution layeér writé took &,80251626 seconds
TIME: convolution layer took 8.672581 seconds
Funning inference on Layer 2
TIME: maxpooling Llayer took @.808598622 seconds
1 1 1 1 . Running inference on layer 3
© Readlng takes malorlty Of tlme' 0459 Seconds TIME: convolution layer took 8.0779198 seconds
Bunning inference on Layer 4
o  Writing datahas minimal overhead: 0.002 seconds  7i: convolution Layer took 6.136815 seconds
Running inference on layer 5
. . TIME: maxpooling Layer Took @.088237458 seconds
e Computing FP operations takes 0.195 seconds Running inference on layer &
TIME: convolution layer took ©.0248409 seconds
. . . Running inference on layer 7
° A Slngle lnference fOl’ ad IOW—l’eS test lmage takeS 0672 TIME: convolution layer took 8,8348511 seconds
Running inference on layer 8
TIME: maxpooling layer took 5.2217e-05 seconds
SeCOHdS Running inference on layer 9
TIME: flatten layer took 1.0895e-05 seconds
Running inference an layer 18
TIME: dense layer took @,88156871 seconds
Running inmference on layer 11
] TIME: dense Layer took @.0800174442 seconds
e How can we reduce data movement with SmartSSD? O a2t Lower taak b-sen
TIME: softmax layer took 1.8034e-85% seconds
TIME: Model inference time 1.01346 seconds

e Majority of time spent on data movement
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ConvolutionKernel

e Created separateclass for Layer 2 Convolution
o Enabled changes to Layer 2 while keeping rest of code same
o Convolve operation moved to independent function

o Called within the 3 level nested for loop

e Created function for single point convolution
o Flattened 3D and 4D arraysinto 1D arrays for synthesis and interfacing
o 800 loop iterations to operate in kernel per call
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ConvolutionKernel

computePointHLS (dataln Internal, &datalut dataldataH]|dataw][dataD], | wal, &layerBias data[dataD] |

jataOut data dataH| dataw) [dataD max(fp32

Layer 2 Convolution Function
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ConvolutionKernel

computePointHLS|
HLS interface mode=n
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Single Point Convolution Function, Target Kernel
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SmartSSD Application

e Created Host code for Peer to Peer memory
transactions between Host/SSD and SSD/FPGA $50 Drives FPGA Driver PCle Address Space
e Synthesized Kernel code to run on SmartSSD FPGA s""'ﬁs:o - e |- e
Read/Write Switch Read/Write
e Verified expected kernel output of convolution point i o
e Collected timing metrics with chrono C++ library ——] P2Pcommunication [ e
o Inconsistent results for individual —
read/compute/write operations SmartSSD Architecture [5]
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SmartSSD Optimization

e Problem
o Latency of FPGA kernel extremely slow
o Memory transactions limited by 512 Byte minimum read/write size
o Read/Write transactions not utilizing high bandwidth
e Solution
o Reduce amount of empty data read/write due to minimum block size to
increase data bandwidth
o Reduce Kernel latency by adding parallelization of single point
o Compute multiple points in 1 kernel call to increase data bandwidth

m Lessread/write transaction overhead from host
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SmartSSD Optimization

e Kernel Improvements
o 0Old Kernel: 9107 cycles for 1 point
o Final Kernel: 708,747 cycles for 1024 points, average 692 cycles for 1 point
m Computes 1024 points per kernel call, loop unrolling with stride 32
m Average 0.865 cycles per loop iteration with parallelization
e Read Improvements
o 0Old Host: Reads 4096 Values per point, Only 1602 Used
o Final Host: Reads 1600 Values per point, Fully utilized
e Write Improvements
o 0Old Host: Writes 1024 Values per point, only 1 Used

o Final Host: Writes 1 value per point, Fully utilized
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Results

e Full Layer Baseline CPU: 0.662seconds ... £yacution Time (seconds)

e Original SmartSSD: 32.246 seconds 40
e /48x SPEED DOWN

0

e Large improvement when running -

multiple convolution operations in one
kernel

Execulion Time (3]

e Majority of time spent reading data

' s e T
from SSD and computing kernel & &.ﬁ? #ﬁ < & :f”f & &8
& & 7 & & A
¢ @:-:‘-‘-‘&’ '}‘Lﬁ o ﬁw "FQG ,;n‘-‘q
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Results

e Full Layer Baseline CPU: 0.662 seconds
e 1024 Points per Kernel: 0.4778 seconds Total Execution Time (seconds)
e 1.38x SPEED UP -

e More points per call ->

o lesslatency overhead from kernel

Exacution Time ()

call control o

o Higher data bandwidth in read

transactions 00

Baceline 40 Points Per Call 90 Foints Per Call 1024 Points Per Call
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Results

° Speedup normalized to Baseline CPU Baseline 40 Polnts Per Call 90 Poinis Per Call 1024 Points Per Call
Read Data 100.00% 39.98% 64.83% 174.87%
e Data read from SSD: 1.74X SPEED UP Compute 100.00% 26.67% 43.19% 77.91%
Wirite Data LA 1.90% 747% 4. 40%
Full Operation  100.00% 44.85% 69.17% 138.61%
e Kernel computations still slightly Speedup of Baseline and N Points Per Call for Individual and
Total Steps
Slower than basehne! room for B Bazeling [ 40 Poirls Per Call 90 Points Per Call [l 1024 Points Par Call
improvement with Vitis HLS e
150.00%
e Data writes slower, due to low
bandwidth transaction of 1 block 1o
writeback per 1024 points — I
0.00%
Read Data Compuie Write Data Full Qperaion
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Results

Baseline CPU: 70.50% moving data
e 1024 Point: 53.82% moving data

e Asdata bandwidth increases per N
point operations, % data movement
decreases

e Final design also has lower data
movement latency

e Leaves more room for improvement
in optimizing kernel or write

transactions
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Baseline 40 Points 90 Points 1024 Points

Data Movement % | 70.50% 65.23% 63.54% 53.82% |
Computation % 29.50%% 34.77% 6. 46% 46.1 8%

Relative Execution Time of Computation Vs. Data Movement

B Computation % [l Data Movement %

100.00%

25.00%

0.D05%
Easeling 40 Points 0 Points 1024 Points
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Analysis

e Application specific designs will take tailoring to achieve
performance benefits, as seen with original FPGA design

e SmartSSDcanprovide speedup in terms of overall execution
time while lowering the gap between data movement and

computationtime

e Designs benefit from high bandwidth applicationsand
parallelization of FPGA design
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Future Work

e Potential improvement for computation
time of floating point operations in FPGA
kernel

o  More parallelization, compute 1024
points faster

e Could speed up writeback by increasing
write bandwidth larger than 1 4KB block

o Store full layer of points then write

back with one write transaction

Speedup of Baseline and M Points Per Call for Individual and
Total Steps

B Baseing [l 40 Porils Per Call 90 Points Per Call [l 1024 Points Per Call
200000%:
150000%
100 00%
50000% I I
0005
Read Data Compute \Wiriba Dmaj Full Qperaion
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Supplemental

55D Read Layer Execution Time (seconds .
! : : SSD Read Layer Execution Time (seconds)
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Supplemental

Kernel Execution Time (seconds) :  Kernel Execution Time (seconds)
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Supplemental

SSD Write Layer Execution Time (seconds) : SSD Write Layer Execution Time (seconds)
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Supplemental

Baseline  Original FPGA Reduced Write Stride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 353864 173.0000 1689.4000 159.4000 92.6000 910000 11.5750 T.1378 26463
Layer Time (5) 1. 4644 7.3609 16,9996 15.9961 9. 2926 9, 1320 1.1616 07163 0. 2656
Laver Difference (s) 0.0000 -16.8965 -16.5352 -15.5317 - 282 -BG6TE -0.64972 -0.2519 0. 158
Speedup 10000 0.0267 0.0273 0.0250 0.0500 0.05089 0.3998 06483 1.7487

Table II: S5D Read Latency

Baseline  Original FPGA  Reduced Write Siride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Poinis
Point Time (us) 2.5044 263.6000 295.4000  248.2000 246.8000 211.8000 6.7900 4.5067 2.4986
Layer Time (s) 0.1953 26,4528 29,6440 24.9074 24,7664 21.2546 0.6814 0.4523 0.2507
Layer Difference (s) 0.0000 -26.2574 -29.4486 =24.7120 -24.5715 -21.0592 -0.4860 -0.25649 -0.0554
Speedup 10000 0.0074 0.0066 0.0078 0.0074 00042 0.2867 0.4314 0.77491

Table III: Single Point Kernel Computation Latency
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Supplemental

Baseline  Original FPGA  Reduced Write  Stride 4 Redueed Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 0.0580 H2.8000 352000 38.6000 498000 39,2000 1.3300 0.3378 0.0299
Layer Time (s) 00025 #.3091 35324 3.8736 4.9975 5.9408 01335 0.0339 0.0030
Layer Difference (s) 00,0000 -B.3066 -3.5299 -3.8711 -4.9950 -5.9383 -0.1308 -0.0314 -0.0005
Specdup 1. ChCRH} 0.0003 00007 00007 (0005 0.0004 0.0190 00747 1.8440

Table IV: S5D Write Latency

Baseline  Original FPGA  Reduced Write Stride 4 Reduced Read 2 m_axi busses 40 Points 90 Points 1024 Points
Point Time (us) 6.5994 321.3449 2771923 240.3659 174.4021 179.00049 14.7142 9.5404 4.7612
Layer Time (s) 06623 32.2476 278168 24,1212 17.5016 17,9640 1.ATGE 09574 04778
Layer Difference (s) [LRL L] -31.5853 =27.1545 -23.4589 - 16,8393 -17.3017 -0.8143 -0,2951 0. 1EA45
Layer Speedup % 1.0000 0.0205 0.0238 0.0275 0.0378 0.0369 0.4485 0.6917 1.3861
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Supplemental

Latency Information

aagute LAlt Kernel Maad Madule Hawe art Intefval Best [epcleés) Awg Ceycles)h Wors® [eépeled) Best (absoluté] Awg (abdslutel Worst [abislute)
coaputePointls_ 1  computePointHLS computePointdLsS Pipeline WITIS LOOP 17 1 @883 Beg3 eEy BEg3 23,807 us 29807 us 25,807 us
computaFalntHLS 1  computePeantHLS  computePointils ol ] 107 o7 w0 0,354 us 074w 0,354 us

Original Kernel Latency Delays

Latency Indorsation

Compute Unit Kernél Hame Module Mame Start Interval Best {cycles) Avg (cycles) Worst (cypcles) Best (absolute] dwg (absolute) Worst (absolute)
computePointHLS 1 computePointils coaputePointHLS Pipeline _VITIS LOOP D04 2 34 34 el 34 0.112 us 0103 ot 0112 us
computePRintHLS L computePointhls  cosputePaintHLS Pipeline VITIS_LOOF 109 3 96 06 ] 206 0. 967 us 0. 987 us 0,567 us
computefointHLS 1 computePointHls computeFointHLS ToETAR ToaTar ToETAT roaTary 2,352 ms 2.2 ws 2,33 ns

Final Kernel Latency Delays
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Supplemental

T Past Roule Utilipatian

LUT 27
LUTRAM ¥
i T Kernel Synthesis Utilization . .
L]
- e o BRAM 2
= - fé LIRAM
Mame LuT LUTAsMem  REG BRAM  URAM  DSP N
Platfarm 147967 9650 205724 257 12 5 “ -
w Uger Budget 374753 151280  @35716 727 116 1959 &t
Used Resources 8715 1188 13127 24 0 15 BUES |
Unused Rasources 365038 1500%1 g2658% 703 116 1544 MM H6
- computeointHLS (1) 8715 1188 13127 24 0 15 PLL 2
COMPUTEPOINTHLS_L 8715 1199 13127 24 0 15 Pl =
0 = =0

Final Kernel Utilization
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Supplemental

Final Kernel Code
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Supplemental

pwrite(nvmeFd, < *>(in_data.data()),

printf( “WRIT As\n”, strerror( ));

exit

printf

exit

Read from SSD to Host
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Supplemental

1. Read from SSD to FPGA

OCL_CHECK(err, err
OCL_CHECK >
OCL CHECK(err, err = krnl

2. Set Input Arguments for Kernel to buffer pointers 3. Call FPGA Kernel

4. Write to SSD from FPGA
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